In der Landwirtschaft fallen mittlerweile immense Datenmengen an. Sie werden durch landwirtschaftliche Maschinen, mittels Fernerkundung durch Satelliten oder Drohnen, mittels Bodensensoren, durch Wetterstationen oder auch immer noch manuell erhoben. Will man diese durchaus wertvolle und große Datenmenge, auch BigData genannt, einem praktischen Nutzen zuführen, um etwa die Landwirtschaft an die Herausforderung des Klimawandels anzupassen oder nachhaltiger zu wirtschaften, müssen die Daten effizient ausgewertet werden.
„Ein wichtiges Werkzeug dazu ist Künstliche Intelligenz (KI), also selbstlernende Systeme, und auch die Data-Cube-Technologie“, erklärt Dr. Heike Gerighausen vom Forschungszentrum für Landwirtschaftliche Fernerkundung des Julius Kühn-Instituts (JKI). Hier setzt das neue Projekt NaLamKI (Nachhaltige Landwirtschaft mittels Künstlicher Intelligenz) an, an dem das JKI beteiligt ist.
Entstehen soll eine cloudbasierte Plattform mit offenen Schnittstellen für Anbieter aus dem vor- und nachgelagerten Bereich der Landwirtschaft, der Industrie, sowie für Serviceanbieter von Spezialanwendungen im Pflanzenbau. Die Cloud ist dabei als Software as a Service (SaaS)-Lösung konzipiert, sodass Anwender Software und IT-Ressourcen als Dienstleistung nutzen können und lediglich einen internetfähigen Computer und eine schnelle Internetanbindung benötigen.
Darüber hinaus soll die Plattform GAIA-X konform umgesetzt werden. Dadurch wird es möglich, nicht nur zentrale, sondern auch dezentrale Cloud-Anbieter und Anwender einzubeziehen ohne deren Datensouveränität zu gefährden. NaLamKI wird damit mittelfristig auch kompatibel mit der europäischen Dateninfrastruktur sein.
In dem vom JKI bearbeiteten Teilvorhaben MussIF (Multiskalige und multisensorale Informationsgewinnung aus Fernerkundungsdaten) werden die Forschenden analysieren, welche Auswertungsmöglichkeiten KI bei landwirtschaftlichen BigData-Verarbeitungen bietet.
Mehr dazu lesen Sie in einer der kommenden Ausgaben des Fruchthandel Magazins.